Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Polyglutamine (polyQ) disorders are inherited neurodegenerative conditions defined by a common pathogenic CAG repeat expansion leading to a toxic gain-of-function of the mutant protein. Consequences of this toxicity include activation of heat-shock proteins (HSPs), impairment of the ubiquitin-proteasome pathway and transcriptional dysregulation. Several studies in animal models have shown that reducing levels of toxic protein using small RNAs would be an ideal therapeutic approach for such disorders, including spinocerebellar ataxia-7 (SCA7). However, testing such RNA interference (RNAi) effectors in genetically appropriate patient cell lines with a disease-relevant phenotype has yet to be explored. Here, we have used primary adult dermal fibroblasts from SCA7 patients and controls to assess the endogenous allele-specific silencing of ataxin-7 by two distinct siRNAs. We further identified altered expression of two disease-relevant transcripts in SCA7 patient cells: a twofold increase in levels of the HSP DNAJA1 and a twofold decrease in levels of the de-ubiquitinating enzyme, UCHL1. After siRNA treatment, the expression of both genes was restored towards normal levels. To our knowledge, this is the first time that allele-specific silencing of mutant ataxin-7, targeting a common SNP, has been demonstrated in patient cells. These findings highlight the advantage of an allele-specific RNAi-based therapeutic approach, and indicate the value of primary patient-derived cells as useful models for mechanistic studies and for measuring efficacy of RNAi effectors on a patient-to-patient basis in the polyQ diseases.

Original publication

DOI

10.1038/ejhg.2014.39

Type

Journal article

Journal

European journal of human genetics : EJHG

Publication Date

01/12/2014

Volume

22

Pages

1369 - 1375