Search results
Found 663 matches for
TDP-43 regulates LC3ylation in neural tissue through ATG4B cryptic splicing inhibition.
Amyotrophic lateral sclerosis (ALS) is an adult-onset motor neuron disease with a mean survival time of three years. The 97% of the cases have TDP-43 nuclear depletion and cytoplasmic aggregation in motor neurons. TDP-43 prevents non-conserved cryptic exon splicing in certain genes, maintaining transcript stability, including ATG4B, which is crucial for autophagosome maturation and Microtubule-associated proteins 1A/1B light chain 3B (LC3B) homeostasis. In ALS mice (G93A), Atg4b depletion worsens survival rates and autophagy function. For the first time, we observed an elevation of LC3ylation in the CNS of both ALS patients and atg4b-/- mouse spinal cords. Furthermore, LC3ylation modulates the distribution of ATG3 across membrane compartments. Antisense oligonucleotides (ASOs) targeting cryptic exon restore ATG4B mRNA in TARDBP knockdown cells. We further developed multi-target ASOs targeting TDP-43 binding sequences for a broader effect. Importantly, our ASO based in peptide-PMO conjugates show brain distribution post-IV administration, offering a non-invasive ASO-based treatment avenue for neurodegenerative diseases.
The Emerging Potential of Advanced Targeted Mass Spectrometry to Become a Routine Tool for Protein Quantification in Biomedical Research.
Mass spectrometry-based proteomics has become an indispensable tool for system-wide protein quantification in systems biology, biomedical research, and increasing for clinical applications. In particular, targeted mass spectrometry offers the most sensitive and reproducible quantitative detection of proteins, peptides and post-translational modifications of any currently applied mass spectrometry technique and is therefore ideally suited to generate high quality quantitative datasets. Despite these apparent advantages, targeted mass spectrometry is only slowly gaining popularity in academia and pharmaceutical industries, mainly due to the additional efforts in assay generation and manual data validation. However, with the increasing accumulation of mass spectrometry data, advances in deep learning spectral prediction for automated assay development, these obstacles can and will be considerably reduced in the near future. Here, we describe the latest technological developments in this field and discuss the emerging importance of targeted mass spectrometry for systems biology research and potential key roles in bridging biomedical discovery and clinical implementation.
A transcriptomics-based drug repositioning approach to identify drugs with similar activities for the treatment of muscle pathologies in spinal muscular atrophy (SMA) models.
Spinal muscular atrophy (SMA) is a genetic neuromuscular disorder caused by the reduction of survival of motor neuron (SMN) protein levels. Although three SMN-augmentation therapies are clinically approved that significantly slow down disease progression, they are unfortunately not cures. Thus, complementary SMN-independent therapies that can target key SMA pathologies and that can support the clinically approved SMN-dependent drugs are the forefront of therapeutic development. We have previously demonstrated that prednisolone, a synthetic glucocorticoid (GC) improved muscle health and survival in severe Smn-/-;SMN2 and intermediate Smn2B/- SMA mice. However, long-term administration of prednisolone can promote myopathy. We thus wanted to identify genes and pathways targeted by prednisolone in skeletal muscle to discover clinically approved drugs that are predicted to emulate prednisolone's activities. Using an RNA-sequencing, bioinformatics, and drug repositioning pipeline on skeletal muscle from symptomatic prednisolone-treated and untreated Smn-/-; SMN2 SMA and Smn+/-; SMN2 healthy mice, we identified molecular targets linked to prednisolone's ameliorative effects and a list of 580 drug candidates with similar predicted activities. Two of these candidates, metformin and oxandrolone, were further investigated in SMA cellular and animal models, which highlighted that these compounds do not have the same ameliorative effects on SMA phenotypes as prednisolone; however, a number of other important drug targets remain. Overall, our work further supports the usefulness of prednisolone's potential as a second-generation therapy for SMA, identifies a list of potential SMA drug treatments and highlights improvements for future transcriptomic-based drug repositioning studies in SMA.
Novel Endogenous Engineering Platform for Robust Loading and Delivery of Functional mRNA by Extracellular Vesicles.
Messenger RNA (mRNA) has emerged as an attractive therapeutic molecule for a plethora of clinical applications. For in vivo functionality, mRNA therapeutics require encapsulation into effective, stable, and safe delivery systems to protect the cargo from degradation and reduce immunogenicity. Here, a bioengineering platform for efficient mRNA loading and functional delivery using bionormal nanoparticles, extracellular vesicles (EVs), is established by expressing a highly specific RNA-binding domain fused to CD63 in EV producer cells stably expressing the target mRNA. The additional combination with a fusogenic endosomal escape moiety, Vesicular Stomatitis Virus Glycoprotein, enables functional mRNA delivery in vivo at doses substantially lower than currently used clinically with synthetic lipid-based nanoparticles. Importantly, the application of EVs loaded with effective cancer immunotherapy proves highly effective in an aggressive melanoma mouse model. This technology addresses substantial drawbacks currently associated with EV-based nucleic acid delivery systems and is a leap forward to clinical EV applications.
Multiple surgical resections for progressive IDH wildtype glioblastoma-is it beneficial?
PURPOSE: The role of repeat resection for recurrent glioblastoma (rGB) remains equivocal. This study aims to assess the overall survival and complications rates of single or repeat resection for rGB. METHODS: A single-centre retrospective review of all patients with IDH-wildtype glioblastoma managed surgically, between January 2014 and January 2022, was carried out. Patient survival and factors influencing prognosis were analysed, using Kaplan-Meier and Cox regression methods. RESULTS: Four hundred thirty-two patients were included, of whom 329 underwent single resection, 83 had two resections and 20 patients underwent three resections. Median OS (mOS) in the cohort who underwent a single operation was 13.7 months (95% CI: 12.7-14.7 months). The mOS was observed to be extended in patients who underwent second or third-time resection, at 22.9 months and 44.7 months respectively (p 95% resection or residual tumour volume of
Why is early-onset atrial fibrillation uncommon in patients with Duchenne Muscular Dystrophy? Insights from the mdx mouse.
BACKGROUND: A reduction in both dystrophin and neuronal nitric oxide synthase (NOS1) secondary to microRNA-31 (miR-31) upregulation contributes to the atrial electrical remodelling that underpins human and experimental atrial fibrillation (AF). By contrast, patients with Duchenne Muscular Dystrophy (DMD), who lack dystrophin and NOS1 and, at least in the skeletal muscle, have raised miR-31 expression, do not have increase susceptibility to AF in the absence of left ventricular (LV) dysfunction. Here we investigated whether dystrophin-deficiency is also associated with atrial upregulation of miR-31, loss of NOS1 protein, and increased AF susceptibility in young mdx mice. METHODS AND RESULTS: Echocardiography showed normal cardiac structure and function in 12- 13 weeks mdx mice, with no indication by assay of hydroxyproline that atrial fibrosis had developed. Absence of dystrophin in mdx mice was accompanied by an overall reduction in syntrophin and a lower NOS1 protein content in the skeletal muscle and in the left atrial and ventricular myocardium, with the latter occurring alongside reduced Nos1 transcript levels (exons 1-2 by qPCR) and an increase in NOS1-polyubiquitination (assessed using tandem polyubiquitination pulldowns; P<0.05 vs. WT). Neither the upregulation of miR-31 nor the substantial reduction in NOS activity observed in the skeletal muscle was present in the atrial tissue of mdx mice. At difference with the skeletal muscle, the mdx atrial myocardium showed a reduction in the constitutive NOS inhibitor, caveolin-1, coupled with an increase in NOS3 serine1177 phosphorylation, in the absence of differences in the protein content of other NOS isoforms or in the relative expression NOS1 splice variants. In line with these findings, transoesophageal atrial burst pacing revealed no difference in AF susceptibility between mdx mice and their wild type littermates. CONCLUSIONS: Dystrophin depletion is not associated with atrial miR-31 upregulation, reduced NOS activity or increased AF susceptibility in the mdx mouse. Compared with the skeletal muscle, the milder atrial biochemical phenotype may explain why patients with DMD do not exhibit a higher prevalence of atrial arrhythmias despite a reduction in NOS1 content.
Peptide-conjugated antimiRs improve myotonic dystrophy type 1 phenotypes by promoting endogenous MBNL1 expression.
Myotonic dystrophy type 1 (DM1) is a rare neuromuscular disease caused by a CTG repeat expansion in the DMPK gene that generates toxic RNA with a myriad of downstream alterations in RNA metabolism. A key consequence is the sequestration of alternative splicing regulatory proteins MBNL1/2 by expanded transcripts in the affected tissues. MBNL1/2 depletion interferes with a developmental alternative splicing switch that causes the expression of fetal isoforms in adults. Boosting the endogenous expression of MBNL proteins by inhibiting the natural translational repressors miR-23b and miR-218 has previously been shown to be a promising therapeutic approach. We designed antimiRs against both miRNAs with a phosphorodiamidate morpholino oligonucleotide (PMO) chemistry conjugated to cell-penetrating peptides (CPPs) to improve delivery to affected tissues. In DM1 cells, CPP-PMOs significantly increased MBNL1 levels. In some candidates, this was achieved using concentrations less than two orders of magnitude below the median toxic concentration, with up to 5.38-fold better therapeutic window than previous antagomiRs. In HSALR mice, intravenous injections of CPP-PMOs improve molecular, histopathological, and functional phenotypes, without signs of toxicity. Our findings place CPP-PMOs as promising antimiR candidates to overcome the treatment delivery challenge in DM1 therapy.
Phosphatidylserine-exposing extracellular vesicles in body fluids are an innate defence against apoptotic mimicry viral pathogens.
Some viruses are rarely transmitted orally or sexually despite their presence in saliva, breast milk, or semen. We previously identified that extracellular vesicles (EVs) in semen and saliva inhibit Zika virus infection. However, the antiviral spectrum and underlying mechanism remained unclear. Here we applied lipidomics and flow cytometry to show that these EVs expose phosphatidylserine (PS). By blocking PS receptors, targeted by Zika virus in the process of apoptotic mimicry, they interfere with viral attachment and entry. Consequently, physiological concentrations of EVs applied in vitro efficiently inhibited infection by apoptotic mimicry dengue, West Nile, Chikungunya, Ebola and vesicular stomatitis viruses, but not severe acute respiratory syndrome coronavirus 2, human immunodeficiency virus 1, hepatitis C virus and herpesviruses that use other entry receptors. Our results identify the role of PS-rich EVs in body fluids in innate defence against infection via viral apoptotic mimicries, explaining why these viruses are primarily transmitted via PS-EV-deficient blood or blood-ingesting arthropods rather than direct human-to-human contact.
Evaluating Efficacy of Peptide-Delivered Oligonucleotides Using the Severe Taiwanese SMA Mouse Model.
Oligonucleotides (ONs) are therapeutic macromolecules with great potential for the treatment of neurological conditions, including spinal muscular atrophy (SMA), a neurodegenerative disease. However, the neurovascular unit severely limits their distribution to the neural parenchyma of the brain and the spinal cord. Cell-penetrating peptides (CPPs) can be conjugated to oligonucleotides to increase their delivery across biological barriers. In this chapter, we describe the synthesis and conjugation of CPPs to oligonucleotides, and the use of a severe SMA mouse model to test in vivo the efficacy of CPP-delivered oligonucleotides, using ELISA, western blot, and TaqMan™ RT-qPCR assays.
PRMT inhibitor promotes SMN2 exon 7 inclusion and synergizes with nusinersen to rescue SMA mice.
Spinal muscular atrophy (SMA) is a leading genetic cause of infant mortality. The advent of approved treatments for this devastating condition has significantly changed SMA patients' life expectancy and quality of life. Nevertheless, these are not without limitations, and research efforts are underway to develop new approaches for improved and long-lasting benefits for patients. Protein arginine methyltransferases (PRMTs) are emerging as druggable epigenetic targets, with several small-molecule PRMT inhibitors already in clinical trials. From a screen of epigenetic molecules, we have identified MS023, a potent and selective type I PRMT inhibitor able to promote SMN2 exon 7 inclusion in preclinical SMA models. Treatment of SMA mice with MS023 results in amelioration of the disease phenotype, with strong synergistic amplification of the positive effect when delivered in combination with the antisense oligonucleotide nusinersen. Moreover, transcriptomic analysis revealed that MS023 treatment has minimal off-target effects, and the added benefit is mainly due to targeting neuroinflammation. Our study warrants further clinical investigation of PRMT inhibition both as a stand-alone and add-on therapy for SMA.
Antibody-oligonucleotide conjugate achieves CNS delivery in animal models for spinal muscular atrophy.
Antisense oligonucleotides (ASOs) have emerged as one of the most innovative new genetic drug modalities. However, their high molecular weight limits their bioavailability for otherwise-treatable neurological disorders. We investigated conjugation of ASOs to an antibody against the murine transferrin receptor, 8D3130, and evaluated it via systemic administration in mouse models of the neurodegenerative disease spinal muscular atrophy (SMA). SMA, like several other neurological and neuromuscular diseases, is treatable with single-stranded ASOs that modulate splicing of the survival motor neuron 2 (SMN2) gene. Administration of 8D3130-ASO conjugate resulted in elevated levels of bioavailability to the brain. Additionally, 8D3130-ASO yielded therapeutic levels of SMN2 splicing in the central nervous system of adult human SMN2-transgenic (hSMN2-transgenic) mice, which resulted in extended survival of a severely affected SMA mouse model. Systemic delivery of nucleic acid therapies with brain-targeting antibodies offers powerful translational potential for future treatments of neuromuscular and neurodegenerative diseases.
Mesyl Phosphoramidate Oligonucleotides as Potential Splice-Switching Agents: Impact of Backbone Structure on Activity and Intracellular Localization.
A series of 2'-deoxy and novel 2'-O-methyl and 2'-O-(2-methoxyethyl) (2'-MOE) oligonucleotides with internucleotide methanesulfonyl (mesyl, μ) or 1-butanesulfonyl (busyl, β) phosphoramidate groups has been synthesized for evaluation as potential splice-switching oligonucleotides. Evaluation of their splice-switching activity in spinal muscular atrophy patient-derived fibroblasts revealed no significant difference in splice-switching efficacy between 2'-MOE mesyl oligonucleotide and the corresponding phosphorothioate (nusinersen). Yet, a survival study with model neonatal mice has shown the antisense 2'-MOE mesyl oligonucleotide to be inferior to nusinersen at the highest dose of 40 mg/kg. A reason for their lower activity in vivo as ascertained by cellular uptake study by fluorescent confocal microscopy in HEK293 cell line could possibly be ascribed to compromised endosomal release and/or nuclear uptake of the 2'-OMe or 2'-MOE μ- and β-oligonucleotides compared to their phosphorothioate analog.
Peptide-Conjugated PMOs for the Treatment of Myotonic Dystrophy.
Antisense oligonucleotides (ASOs) have shown great therapeutic potential in the treatment of many neuromuscular diseases including myotonic dystrophy 1 (DM1). However, systemically delivered ASOs display poor biodistribution and display limited penetration into skeletal muscle. The conjugation of cell-penetrating peptides (CPPs) to phosphorodiamidate morpholino oligonucleotides (PMOs), a class of ASOs with a modified backbone, can be used to enhance ASO skeletal muscle penetration. Peptide-PMOs (P-PMOs) have been shown to be highly effective in correcting the DM1 skeletal muscle phenotype in both murine and cellular models of DM1 and at a molecular and functional level. Here we describe the synthesis and conjugation of P-PMOs and methods for analyzing their biodistribution and toxicity in the HSA-LR DM1 mouse model and their efficacy both in vitro and in vivo using FISH and RT-PCR splicing analysis.
Application of Antisense Conjugates for the Treatment of Myotonic Dystrophy Type 1.
Myotonic dystrophy type 1 (DM1) is one of the most common muscular dystrophies and can be potentially treated with antisense therapy decreasing mutant DMPK, targeting miRNAs or their binding sites or via a blocking mechanism for MBNL1 displacement from the repeats. Unconjugated antisense molecules are able to correct the disease phenotype in mouse models, but they show poor muscle penetration upon systemic delivery in DM1 patients. In order to overcome this challenge, research has focused on the improvement of the therapeutic window and biodistribution of antisense therapy using bioconjugation to lipids, cell penetrating peptides or antibodies. Antisense conjugates are able to induce the long-lasting correction of DM1 pathology at both molecular and functional levels and also efficiently penetrate hard-to-reach tissues such as cardiac muscle. Delivery to the CNS at clinically relevant levels remains challenging and the use of alternative administration routes may be necessary to ameliorate some of the symptoms experienced by DM1 patients. With several antisense therapies currently in clinical trials, the outlook for achieving a clinically approved treatment for patients has never looked more promising.
An Induced Pluripotent Stem Cell-Derived Human Blood-Brain Barrier (BBB) Model to Test the Crossing by Adeno-Associated Virus (AAV) Vectors and Antisense Oligonucleotides.
The blood-brain barrier (BBB) is the specialised microvasculature system that shields the central nervous system (CNS) from potentially toxic agents. Attempts to develop therapeutic agents targeting the CNS have been hindered by the lack of predictive models of BBB crossing. In vitro models mimicking the human BBB are of great interest, and advances in induced pluripotent stem cell (iPSC) technologies and the availability of reproducible differentiation protocols have facilitated progress. In this study, we present the efficient differentiation of three different wild-type iPSC lines into brain microvascular endothelial cells (BMECs). Once differentiated, cells displayed several features of BMECs and exhibited significant barrier tightness as measured by trans-endothelial electrical resistance (TEER), ranging from 1500 to >6000 Ωcm2. To assess the functionality of our BBB models, we analysed the crossing efficiency of adeno-associated virus (AAV) vectors and peptide-conjugated antisense oligonucleotides, both currently used in genetic approaches for the treatment of rare diseases. We demonstrated superior barrier crossing by AAV serotype 9 compared to serotype 8, and no crossing by a cell-penetrating peptide-conjugated antisense oligonucleotide. In conclusion, our study shows that iPSC-based models of the human BBB display robust phenotypes and could be used to screen drugs for CNS penetration in culture.
Modulation of Pro-Inflammatory IL-6 Trans-Signaling Axis by Splice Switching Oligonucleotides as a Therapeutic Modality in Inflammation.
Interleukin-6 (IL-6) is a pleiotropic cytokine that plays a crucial role in maintaining normal homeostatic processes under the pathogenesis of various inflammatory and autoimmune diseases. This context-dependent effect from a cytokine is due to two distinctive forms of signaling: cis-signaling and trans-signaling. IL-6 cis-signaling involves binding IL-6 to the membrane-bound IL-6 receptor and Glycoprotein 130 (GP130) signal-transducing subunit. By contrast, in IL-6 trans-signaling, complexes of IL-6 and the soluble form of the IL-6 receptor (sIL-6R) signal via membrane-bound GP130. Various strategies have been employed in the past decade to target the pro-inflammatory effect of IL-6 in numerous inflammatory disorders. However, their development has been hindered since these approaches generally target global IL-6 signaling, also affecting the anti-inflammatory effects of IL-6 signaling too. Therefore, novel strategies explicitly targeting the pro-inflammatory IL-6 trans-signaling without affecting the IL-6 cis-signaling are required and carry immense therapeutic potential. Here, we have developed a novel approach to specifically decoy IL-6-mediated trans-signaling by modulating alternative splicing in GP130, an IL-6 signal transducer, by employing splice switching oligonucleotides (SSO), to induce the expression of truncated soluble isoforms of the protein GP130. This isoform is devoid of signaling domains but allows for specifically sequestering the IL-6/sIL-6R receptor complex with high affinity in serum and thereby suppressing inflammation. Using the state-of-the-art Pip6a cell-penetrating peptide conjugated to PMO-based SSO targeting GP130 for efficient in vivo delivery, reduced disease phenotypes in two different inflammatory mouse models of systemic and intestinal inflammation were observed. Overall, this novel gene therapy platform holds great potential as a refined therapeutic intervention for chronic inflammatory diseases.