Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

Extracellular vesicles are lipid-bilayer-enclosed nanoparticles present in the majority of biological fluids that mediate intercellular communication. EVs are able to transfer their contents (including nucleic acids, proteins, lipids, and small molecules) to recipient cells, and thus hold great promise as drug delivery vehicles. However, their therapeutic application is limited by lack of efficient cargo loading strategies, a need to improve EV tissue-targeting capabilities and a requirement to improve escape from the endolysosomal system. These challenges can be effectively addressed by modifying EVs with peptides which confer specific advantageous properties, thus enhancing their therapeutic potential. Here we provide an overview of the applications of peptide technology with respect to EV therapeutics. We focus on the utility of EV-modifying peptides for the purposes of promoting cargo loading, tissue-targeting and endosomal escape, leading to enhanced delivery of the EV cargo to desired cells/tissues and subcellular target locations. Both endogenous and exogenous methods for modifying EVs with peptides are considered.

Original publication

DOI

10.1007/978-1-0716-1752-6_8

Type

Chapter

Book title

Methods in Molecular Biology

Publication Date

01/01/2022

Volume

2383

Pages

119 - 141