Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Duchenne muscular dystrophy (DMD) is the most prevalent inherited myopathy affecting children, caused by genetic loss of the gene encoding the dystrophin protein. Here we have investigated the use of the Staphylococcus aureus CRISPR-Cas9 system and a double-cut strategy, delivered using a pair of adeno-associated virus serotype 9 (AAV9) vectors, for dystrophin restoration in the severely affected dystrophin/utrophin double-knockout (dKO) mouse. Single guide RNAs were designed to excise Dmd exon 23, with flanking intronic regions repaired by non-homologous end joining. Exon 23 deletion was confirmed at the DNA level by PCR and Sanger sequencing, and at the RNA level by RT-qPCR. Restoration of dystrophin protein expression was demonstrated by western blot and immunofluorescence staining in mice treated via either intraperitoneal or intravenous routes of delivery. Dystrophin restoration was most effective in the diaphragm, where a maximum of 5.7% of wild-type dystrophin expression was observed. CRISPR treatment was insufficient to extend lifespan in the dKO mouse, and dystrophin was expressed in a within-fiber patchy manner in skeletal muscle tissues. Further analysis revealed a plethora of non-productive DNA repair events, including AAV genome integration at the CRISPR cut sites. This study highlights potential challenges for the successful development of CRISPR therapies in the context of DMD.

Original publication

DOI

10.1016/j.omtn.2022.10.010

Type

Journal article

Journal

Mol Ther Nucleic Acids

Publication Date

13/12/2022

Volume

30

Pages

379 - 397

Keywords

CRISPR-Cas9, DMD, MT: RNA/DNA Editing, dKO, dystrophin, gene editing, non-productive editing, uniformity