Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Pseudogenes are junk DNA gene remnants generated by inactivating mutations or the loss of regulatory sequences, often following gene duplication or retrotransposition events. These pseudogenes have previously been considered to be molecular fossils derived from once-coding genes. In many cases, pseudogenes confer no observable selective advantage to the host organism and may be on a path towards removal from the genome. However, pseudogenes can also serve as raw material for the exaptation of novel functions, particularly in relation to the regulation of gene expression. Many pseudogenes are resurrected as noncoding RNA genes, which function in RNA-based gene regulatory circuits. As such, functional pseudogenes might simply be considered as 'genes'. Here, we discuss the role of these pseudogene-derived RNAs as regulators of gene expression in the context of human disease. In particular, we consider the manipulation of pseudogene transcripts through the use of antisense oligonucleotides, siRNAs, aptamers or classical gene therapy approaches as novel pharmacological strategies.

Original publication




Journal article



Publication Date





2023 - 2034


Epigenesis, Genetic, Evolution, Molecular, Gene Expression Regulation, Genome, Human, Humans, Molecular Targeted Therapy, Pseudogenes, RNA, Small Interfering, RNA, Untranslated, Transcription, Genetic