Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Microsatellites are short tandem repeats that evolve predominantly through a stepwise mutation model. Despite intensive study, many aspects of their evolution remain unresolved, particularly the question of how compound microsatellites containing two different motifs evolve. Previous work described profound asymmetries in the probability that any given second motif lies either 3' or 5' of an AC repeat tract. Here we confirm and extend this analysis to examine the length dependence of these asymmetries. We then use the differences in length between homologous human and chimpanzee microsatellites as a surrogate measure of the slippage-based mutation rate to explore factors that influence this process. We find that the dominant predictor of mutation rate is the length of the tract being considered, which is a stronger predictor than the length of the two tracts combined, but other factors also have a significant impact, including the length of the second tract and which of the two tracts lies upstream. We conclude that compound microsatellites rarely arise through random point mutations generating a second motif within a previously pure tract. Instead, our analyses point toward a model in which poorly understood mutation biases, probably affecting both slippage and point mutations and often showing 3'-5' polarity, promote the formation of compound microsatellites. The result is convergent evolution. We suggest that, although their exact nature remains unclear, these biases are likely attributable to structural features, such as the propensity of AC tracts to form Z-DNA.

Original publication




Journal article


J Mol Evol

Publication Date





160 - 170


Animals, Base Composition, Evolution, Molecular, Genome, Human, Humans, Microsatellite Repeats, Models, Genetic, Mutation, Nucleic Acid Conformation, Pan troglodytes