Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Antisense oligonucleotides (AOs) are effective splice switching agents and have potential as therapeutics via the exclusion or inclusion of specific target gene exons to ameliorate and modify disease progression. The leading example is Duchenne muscular dystrophy (DMD), a fatal muscle degenerative disease, where AO-mediated skipping of specific DMD gene exons can restore the disrupted DMD open reading frame, leading to the production of functional dystrophin protein and ameliorate the DMD phenotype in animal models. Clinical proof-of-concept has recently been shown in two successful, independent Phase I clinical trials. These trials both followed local intramuscular treatments, and the challenge now is to develop and test systemic protocols, which will be required for treatment-aimed disease modification. Recently, a number of groups have demonstrated the promise of AOs directly conjugated to cell-penetrating peptides (CPPs) as having significant potential for systemic delivery and therapeutic correction in DMD animal models. Here, we review the background to this work and describe in detail the experimental protocols used in studies aimed at investigating CPP-conjugated AOs as systemic splice correcting agents in animal models of DMD.

Original publication




Journal article


Methods Mol Biol

Publication Date





321 - 338


Animals, Blotting, Western, Cell-Penetrating Peptides, Disease Models, Animal, Drug Carriers, Electrophoresis, Polyacrylamide Gel, Exons, Immunohistochemistry, Mice, Muscular Dystrophy, Duchenne, Oligonucleotides, Antisense, RNA, RNA Splicing, Reverse Transcriptase Polymerase Chain Reaction